Largest j-simplices in d-cubes: Some relatives of the hadamard maximum determinant problem
نویسندگان
چکیده
منابع مشابه
LARGEST j-SIMPLICES IN d-CUBES: SOME RELATIVES OF THE HADAMARD MAXIMUM DETERMINANT PROBLEM
This paper studies the computationally diicult problem of nding a largest j-dimensional simplex in a given d-dimensional cube. The case in which j = d is of special interest, for it is equivalent to the Hadamard maximum determinant problem; it has been solved for innnitely many values of d but not for d = 14. (The subcase in which j = d 3 (mod 4) subsumes the famous problem on the existence of ...
متن کاملthe problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اولInteractive Visualization of the Largest Radioastronomy Cubes
3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volum...
متن کاملConstruction of some Hadamard matrices with maximum excess
o(n) = max a(H) for all H-matrices of order n (1) An equivalent notion is the weight w(H) which is the number of l’s in H, then a(H) = 2w(H) n2 and u(n) = 2w(n) n2, see [4,12,15]. H-matrices with maximum excess are known for the following values of n: n 6 52 (n = 0 mod 4), n = 64, 80, 84, 100, 124, 144, 172, 196, 256, 324, 400, and IZ = (4m)*, where 4m is the order of an H-matrix [2,4-5,10-12,1...
متن کاملOn largest volume simplices and sub-determinants
We show that the problem of finding the simplex of largest volume in the convex hull of n points in Q can be approximated with a factor of O(log d) in polynomial time. This improves upon the previously best known approximation guarantee of d(d−1)/2 by Khachiyan. On the other hand, we show that there exists a constant c > 1 such that this problem cannot be approximated with a factor of c, unless...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1996
ISSN: 0024-3795
DOI: 10.1016/0024-3795(95)00541-2